i want able save array subclass npy file, , recover result later.
something like:
>>> class myarray(np.ndarray): pass >>> data = myarray(np.arange(10)) >>> np.save('fname', data) >>> data2 = np.load('fname') >>> assert isinstance(data2, myarray) # raises assertionerror
the docs says (emphasis mine):
the format explicitly not need to:
- [...]
- fully handle arbitrary subclasses of numpy.ndarray. subclasses accepted writing, array data written out. regular numpy.ndarray object created upon reading file. the api can used build format particular subclass, out of scope general npy format.
so possible make above code not raise assertionerror?
i don't see evidence np.save
handles array subclasses.
i tried save np.matrix
it, , got ndarray
.
i tried save np.ma
array, , got error
notimplementederror: maskedarray.tofile() not implemented yet.
saving done np.lib.npyio.format.write_array
, does
_write_array_header() # save dtype, shape etc
if dtype
object uses pickle.dump(array, fp ...)
otherwise array.tofile(fp)
. tofile
handles writing data buffer.
i think pickle.dump
of array ends using np.save
, don't recall how that's triggered.
i can example pickle
array, , load it:
in [657]: f=open('test','wb') in [658]: pickle.pickler(f).dump(x) in [659]: f.close() in [660]: np.load('test') in [664]: f=open('test','rb') in [665]: pickle.load(f)
this pickle
dump/load sequence works test np.ma
, np.matrix
, sparse.coo_matrix
cases. that's direction explore own subclass.
searching on numpy
, pickle
found preserve custom attributes when pickling subclass of numpy array. answer involves custom .__reduce__
, .__setstate__
.
Comments
Post a Comment